>
Course Unit Title Course Unit Code Type of Course Unit Level of Course Unit Year of Study Semester ECTS Credits
Electric Electronics Design and Application MEL343 Elective Bachelor's degree 3 Fall 4

Name of Lecturer(s)

Prof. Dr. Nurettin ABUT

Learning Outcomes of the Course Unit

1) Design, control, set-up, and reconstruction of electrical, and electronic circuits

Program Competencies-Learning Outcomes Relation

  Program Competencies
1 2 3 4 5 6 7 8 9 10
Learning Outcomes
1 High High Middle Middle High Middle Middle Middle Middle Middle

Mode of Delivery

Face to Face

Prerequisites and Co-Requisites

None

Recommended Optional Programme Components

Power Electronics Power Electronics Laboratory Electronic Circuits

Course Contents

This paper will described a project- and problem-based learning approach in teaching power electronics for upper-level undergraduate students enrolled in the applied engineering technology program at our university. This course will have an increased content of applications of power electronics in renewable energy conversion systems. Power electronics, still an emerging technology is multidisciplinary in its nature and the design and analysis of power electronics circuits include the applications of circuit theory, electronics, control theory, electromagnetics, semiconductor devices, microprocessors, numerical methods, signal processing, computer simulation, heat transfer, electromagnetic compatibility, and artificial intelligence. However it is also important to teach students the different fields in which technology is used, e.g. adjustable speed drives, switched mode power supplies, or power electronics for renewable energy. Experience has also shown that students have a difficult time with power electronics mostly because of the maturity the subject demands. A natural and efficient way of teaching power electronics is the problem-oriented and project-based learning approach. Students are often unaccustomed to assimilating materials from many areas at one time, thereby making it difficult for them to simultaneously bring together the circuit, signal and system analysis, electromagnetics and control theory topics which are required to fully describe the operation of a power electronic converter. The projectbased course and laboratory described in this paper directly addresses these difficulties by helping students to reduce theory to practice. This approach supports the prerequisite lecture material and allows study of some practical issues which are best handled in a laboratory setting. The course format makes the students gradually more responsible for the analysis and design of control circuitry which permits nominal operation of generic power converters. The laboratory experience will culminate in projects where students analyze, design, simulate and demonstrate power electronics related topics. Each project will be carried out by a team of three or four students. The projects and part of the laboratory experiments will be focused on power applications in the fast growing emerging fields of the renewable industry, such as wind and solar energy or fuel cells. We believe that this will be an efficient approach in teaching power electronics because it can give the students some of the necessary skills the industry is asking for.

Recommended or Required Reading

Planned Learning Activities and Teaching Methods



Assessment Methods and Criteria

Contribution of Midterm Examination to Course Grade

30%

Contribution of Final Examination to Course Grade

70%

Total

100%

Language of Instruction

Turkish

Work Placement(s)

Not Required